Central European Institute of Technology BRNO | CZECH REPUBLIC

Algorithms for reconstruction with nondiffracting sources

Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic

Line integrals and projections

- Line integral represents the total attenutaion of X-rays along a line through the object
- Function of the object $f(x, y)$
- Parametres of the line integral (θ, t)

Equation of line AB:

$$
\begin{equation*}
x \cos \theta+y \sin \theta=t \tag{1}
\end{equation*}
$$

- Relationship of the line integral $\mathrm{P} \theta(\mathrm{t})$:

$$
\begin{equation*}
P_{\theta}(t)=\int_{(\theta, t) \text { line }} f(x, y) d s \tag{2}
\end{equation*}
$$

- Using delta function:

$$
\begin{equation*}
P_{\theta}(t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \theta+y \sin \theta-t) d x d y \tag{3}
\end{equation*}
$$

- Parallel projections taken by measuring of a set of parallel rays for a number of different angles

- A fan beam projection - single source is fixed relative to a line of detectors

" The Shepp and Logan „head phantom"
- Superposition of 10 ellipses

(a)

(b)

Expressions for projections of a single ellipse:

$$
f(x, y)=\left\{\begin{array}{lll}
\rho & \text { for } \frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}} \leq 1 & \text { (inside the ellipse) } \tag{4}\\
0 & \text { otherwise } & \text { (outside the ellipse) }
\end{array}\right.
$$

Expressions of projections:

$$
P_{\theta}(t)= \begin{cases}\frac{2 \rho A B}{a^{2}(\theta)} \sqrt{a^{2}(\theta)-t^{2}} & \text { for }|t| \leq a(\theta) \tag{5}\\ 0 & |t|>a(\theta)\end{cases}
$$

The Fourier Slice Theorem

- Fourier transform of a parallel projection is equal to a slice of the two-dimensional Fourier transform of the original object -> derivation
- Two dimensional Fourier transform of the object:

$$
\begin{equation*}
F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v)} d x d y \tag{6}
\end{equation*}
$$

- Projection at an angle $\theta, \mathrm{P} \theta(\mathrm{t})$, and its Fourier transorm:

$$
\begin{equation*}
S_{\theta}(w)=\int_{-\infty}^{\infty} P_{\theta}(t) e^{-j 2 \pi w t} d t \tag{7}
\end{equation*}
$$

- Projection at $\theta=0$ and $v=0$:

$$
\begin{equation*}
F(u, 0)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi u x} d x d y \tag{8}
\end{equation*}
$$

- Splitting integrals into two parts:

$$
\begin{equation*}
F(u, 0)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(x, y) d y\right] e^{-j 2 \pi u x} d x \tag{9}
\end{equation*}
$$

- Term in brackets as the equation for a projection:

$$
\begin{equation*}
P_{\theta=0}(x)=\int_{-\infty}^{\infty} f(x, y) d y \tag{10}
\end{equation*}
$$

- Substituting this in (9):

$$
\begin{equation*}
F(u, 0)=\int_{-\infty}^{\infty} P_{\theta=0}(x) e^{-j 2 \pi u x} d x \tag{11}
\end{equation*}
$$

- The simplest form of the Fourier Slice Theorem:

$$
\begin{equation*}
F(u, 0)=S_{\theta=0}(u) \tag{12}
\end{equation*}
$$

- The Fourier Slice Theorem relates the Fourier transform of a projection to the Fourier transform of the object along a radial line

- (t, s) coordinate system as a rotated version:

$$
\left[\begin{array}{l}
t \tag{13}\\
s
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \sin \theta \\
-\sin \theta \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Projection along lines of constant t :

$$
\begin{equation*}
P_{\theta}(t)=\int_{-\infty}^{\infty} f(t, s) d s \tag{14}
\end{equation*}
$$

- Fourier transform:

$$
\begin{equation*}
S_{\theta}(w)=\int_{-\infty}^{\infty} P_{\theta}(t) e^{-j 2 \pi w t} d t \tag{15}
\end{equation*}
$$

- Substituting the projection:

$$
\begin{equation*}
S_{\theta}(w)=\int_{-\infty}^{\infty}[f(t, s) d s] e^{-j 2 \pi w t} d t \tag{16}
\end{equation*}
$$

- Transforming into (x, y) :

$$
S_{\theta}(w)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi w(x \cos \theta+y \sin \theta)} d x d y
$$

- Two-dimensional Fourier Transform at a spatial frequency ($u=w \cos \theta, v=w \sin \theta$):

$$
\begin{equation*}
S_{\theta}(w)=F(w, \theta)=F(w \cos \theta, w \sin \theta) \tag{18}
\end{equation*}
$$

- Inverse Fourier transform:

$$
\begin{equation*}
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v \tag{19}
\end{equation*}
$$

- For the purpose of computation:

$$
\begin{equation*}
f(x, y) \approx \frac{1}{A^{2}} \sum_{m=-N / 2}^{N / 2} \sum_{n=-N / 2}^{N / 2} F\left(\frac{m}{A}, \frac{n}{A}\right) e^{j 2 \pi((m / A) x+(n / A) y)} \tag{20}
\end{equation*}
$$

- Previous equation for:

$$
\begin{equation*}
-\frac{A}{2}<x<\frac{A}{2} \text { and }-\frac{A}{2}<y<\frac{A}{2} \tag{21}
\end{equation*}
$$

- Collecting projections of the object at a number of angles gives estimates of the Fourier transform of the object along radial lines

Reconstruction algorithms for parallel projections

- The algorithm that is currently being used in almost all applications of straight ray tomography is the filtered backprojection algorithm.
- As the name implies, there are two steps to the filtered backprojection algorithm:
- the filtering part, which can be visualized as a simple weighting of each projection in the frequency domain
- the backprojection part, which is equivalent to finding the elemental reconstructions corresponding to each wedge filter mentioned above.
- The first step is:

A simple weighting in the frequency domain is used to take each projection and estimate a pie-shaped wedge of the object's Fourier transform. Perhaps the simplest way to do this is to take the value of the Fourier transform of the projection, $S_{\theta}(w)$, and multiply it by the width of the wedge at that frequency.
Thus if there are K projections over 180° then at a given frequency w, each wedge has a width of $(2 \pi|w| / K) S_{\theta}(w)$.

- The final reconstruction is found by adding together the two-dimensional inverse Fourier transform of each weighted projection. Because each projection only gives the values of the Fourier transform along a single line, this inversion can be performed very fast. This step is commonly called a backprojection.
- The complete filtered backprojection algorithm can therefore be written as:

1. Sum for each of the K angles, θ, between 0° and 180°
2. Measure the projection, $P_{\theta}(t)$
3. Fourier transform it to find $S_{\theta}(w)$
4. Multiply it by the weighting function $2 \pi|w| / K$
5. Sum over the image plane the inverse Fourier transforms of the filtered projections (the backprojection process).

Backprojection algorithm for parallel beam projections

- Recalling the formula for the inverse Fourier transform, the object function, $f(x, y)$, can be expressed as:

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v
$$

- we can write the inverse Fourier transform of a polar function as:

$$
\begin{gathered}
u=w \cos \theta \quad v=w \sin \theta \quad d u d v=w d w d \theta \\
f(x, y)=\int_{0}^{2 \pi} \int_{0}^{\infty} F(w, \theta) e^{j 2 \pi w(x \cos \theta+y \sin \theta)} w d w d \theta
\end{gathered}
$$

- Splitting the equation in two, considering θ from 0° to 180° and then from 180° to 360°

$$
f(x, y)=\int_{0}^{\pi}\left[\int_{-\infty}^{\infty} F(w, \theta)|w| e^{j 2 \pi w t} d w\right] d \theta
$$

- If we substitute the Fourier transform of the projection at angle $\theta, \mathrm{S}_{\theta}(\mathrm{w})$ for the two-dimensional Fourier transform $\mathrm{F}(\mathrm{w}, \theta)$, we get:

$$
f(x, y)=\int_{0}^{\pi}\left[\int_{-\infty}^{\infty} S_{\theta}(w)|w| e^{j 2 \pi w t} d w\right] d \theta
$$

- It can be expressed as:

$$
f(x, y)=\int_{0}^{\pi} Q_{\theta}(x \cos \theta+y \sin \theta) d \theta \quad Q_{\theta}(t)=\int_{-\infty}^{\infty} S_{\theta}(w)|w| e^{j 2 \pi w t} d w
$$

- The parameter whas the dimension of spatial frequency. The integration in

$$
Q_{\theta}(t)=\int_{-\infty}^{\infty} S_{\theta}(w)|w| e^{j 2 \pi w t} d w
$$

- Must be carried out over all spatial frequencies. In practice the energy contained in the Fourier transform components above a certain frequency is negligible, so for all practical purposes the projections may be considered to be bandlimited.

If W is a frequency higher than the highest
frequency component in each projection, then by the sampling theorem the projections can be

$$
T=\frac{1}{2 W}
$$

sampled at intervals of

- The FFT of $\mathrm{S}_{\theta}(\mathrm{w})$:

$$
S_{\theta}(w) \approx S\left(m \frac{2 W}{N}\right)=\frac{1}{2 W} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} P_{\theta}\left(\frac{k}{2 w}\right) e^{-j 2 \pi(m k / N)}
$$

The next step is to evaluate the "modified projection" $Q_{\theta}(t)$ digitally. Since the Fourier transforms $S_{\theta}(w)$ have been assumed to be bandlimited (W), can be approximated by

$$
Q_{\theta}(t)=\int_{-W}^{W} S_{\theta}(w)|w| e^{j 2 \pi w t} d w \approx \frac{2 W}{N} \sum_{m=-\frac{N}{2}}^{\frac{N}{2}} S_{\theta}\left(m \frac{2 W}{N}\right)\left|m \frac{2 W}{N}\right| e^{j 2 \pi m(2 W / N) t}
$$

Filtering operation comments

$$
Q_{\theta}(t)=\int_{-\infty}^{\infty} S_{\theta}(w)|w| e^{j 2 \pi w t} d w
$$

- The last equation can be expressed in t-domain as:

$$
Q_{\theta}(t)=\int P_{\theta}(\alpha) p(t-\alpha) d \alpha
$$

- Where $p(t)$ is nominally the IFT of the $|\mathrm{w}|$ function in the frequency domain. But in this case it is necessary to consider the all expression:

$$
|w| e^{-\epsilon|w|} \quad \longrightarrow \quad p_{\epsilon}(t)=\frac{\epsilon^{2}-(2 \pi t)^{2}}{\left(\epsilon^{2}+(2 \pi t)^{2}\right)^{2}}
$$

The IFT

$$
Q_{\theta}(t)=\int_{-\infty}^{\infty} j 2 \pi w S_{\theta}(w)\left[\frac{-j}{2 \pi} \operatorname{sgn}(w)\right] e^{j 2 \pi w t} d w \quad \operatorname{sgn}(w)=\left\{\begin{aligned}
1 & \text { for } w>0 \\
-1 & \text { for } w<0
\end{aligned}\right.
$$

- By the standard convolution theorem:

$$
\begin{gathered}
Q_{\theta}(t)=\left\{\text { IFT of } j 2 \pi w S_{\theta}(w)\right\} *\left\{\text { IFT of } \frac{-j}{2 \pi} \operatorname{sgn}(w)\right\} \\
j 2 \pi w S_{\theta}(w) \xrightarrow{\mathrm{IFT}}(\partial / \partial t) P_{\theta}(t) \quad \frac{-j}{2 \pi} \operatorname{sgn}(w) \xrightarrow{\mathrm{IFT}} \frac{1}{t} \\
Q_{\theta}(t)=\frac{1}{2 \pi^{2} t} * \frac{\partial P_{\theta}(t)}{\partial t}=\text { Hilbert Transform of } \frac{\partial P_{\theta}(t)}{\partial t}
\end{gathered}
$$

Computer implementation of the Algorithm

(a)

(b)

(c)

(a)

(b)

Reconstruction algorithms for fan projections

- Point source of radiation emanates a fan-shaped beam. The source and the entire bank of detectors, on the other side of scanned object, are rotated to generate the desired number of fan projections.
- Simple backprojection of parallel beam tomography \longrightarrow weighted backprojection of fan beam.
- Generally there are two types of fan projections:

Equiangular

Equispaced

- Point source of radiation emanates a fan-shaped beam. The source and the entire bank of detectors, on the other side of scanned object, are rotated to generate the desired number of fan projections.
- Simple backprojection of parallel beam tomography \longrightarrow weighted backprojection
- There are tw

Equiangular
Equispaced

Equiangular rays

- $R_{\beta}(\gamma)$ is a fan projection and function $f(x, y)$, in polar coordinates $f(r, \phi)$ can be written as:

$$
\begin{gathered}
f(r, \phi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-\gamma_{m}}^{\gamma_{m}} R_{\beta}(\gamma) h(r \cos (\beta+\gamma-\phi)-D \sin \gamma) D \cos \gamma d \gamma d \beta \\
r \cos (\beta+\gamma-\phi)-D \sin \gamma)=L \sin \left(\gamma^{\prime}-\gamma\right)
\end{gathered}
$$

- $\mathrm{R}_{\mathrm{b}}(\gamma)$ is a fan projection and function $f(r, \phi)$ in polar coordinates can be written as:

$$
\begin{gathered}
f(r, \phi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-\gamma m}^{\gamma m} R_{\beta}(\gamma) h\left(L \operatorname { s i n } \left(L \sin \left(\gamma^{\prime}-\gamma\right) D \cos \gamma d \gamma d \beta\right.\right. \\
r \cos (\beta+\gamma-\phi)-D \sin \gamma)=L \sin \left(\gamma^{\prime}-\gamma\right)
\end{gathered}
$$

- The function $h\left(L \sin \left(y^{\prime}-\gamma\right)\right)$ will be then expressed in terms of $h(t)$. Note that $h(t)$ is the inverse Fourier transform of $|w|$ in the frequency domain:

$$
\begin{aligned}
& h(t)=\int_{-\infty}^{\infty}|w| e^{j 2 \pi w t} d w h(L \sin \gamma)=\int_{-\infty}^{\infty}|w| e^{j 2 \pi w L \sin \gamma} d w \\
& w^{\prime}=w \frac{L \sin \gamma}{\gamma}
\end{aligned}
$$

- Weighted filtered backprojection algorithm can be written as:

$$
f(r, \phi)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1}{L^{2}} \int_{-\gamma_{m}}^{\gamma_{m}} R_{\beta}(\gamma) g\left(\gamma^{\prime}-\gamma\right) D \cos \gamma d \gamma d \beta
$$

- where

$$
g(y)=\frac{1}{2}\left(\frac{\gamma}{\sin \gamma}\right)^{2} h(\gamma)
$$

- The image reconstruction is done using the following three steps:
" Step 1 Each projection $R_{\beta}(\gamma)$ is sampled with sampling interval α. The known data then are $R_{\beta i}(n \alpha)$ where n takes integer values. The first step is to generate for each fan projection $R_{\beta i}(n \alpha)$ the corresponding $R_{\beta i}^{\prime}(n \alpha)$:

$$
\left.R_{\beta i}^{\prime}(n \alpha)=R_{\beta i} n \alpha\right) \cdot D \cos n \alpha
$$

- Step 2 Discrete convolution using an FFT program is performed. Each modified projection $R_{\beta i}^{\prime}(n \alpha)$ with $g(n \alpha)$ is convolved to generate the corresponding filtered projection:

$$
\left.Q_{\beta i} n \alpha\right)=R_{\beta i}^{\prime}(n \alpha) \cdot g(n \alpha)
$$

Response for the discrete impulse $\longrightarrow g(n \alpha)= \begin{cases}\frac{1}{8 \alpha^{2}}, & n=0 \\ 0, & n \text { is even } \\ \left(\frac{\alpha}{\pi \alpha \sin n \alpha}\right)^{2}, & n \text { is odd. }\end{cases}$

- Step 3 Weighted backprojection of each filtered projection along the fan is performed:

$$
\left.f(x, y) \approx \Delta \beta \sum_{i=1}^{M} \frac{1}{L^{2}\left(x, y, \beta_{i}\right)} Q_{\beta i} \gamma^{\prime}\right)
$$

The image reconstruction is done using the following three steps:

$$
\left.f(x, y) \approx \Delta \beta \sum_{i=1}^{M} \frac{1}{L^{2}\left(x, y, \beta_{i}\right)} Q_{\beta i} \gamma^{\prime}\right)
$$

Equally spaced collinear detectors

- $\quad R_{\beta}(s)$ is a fan projection and function $f(x, y)$, in polar coordinates $f(r, \phi)$ can be written as:

$$
\begin{aligned}
& f(r, \phi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-s_{m}}^{s_{m}} R_{\beta}(s) h\left(r \cos \left(\beta+\tan ^{-1} \frac{s}{D}-\phi\right)-\frac{D s}{\sqrt{D^{2}+s^{2}}}\right) \frac{D^{3}}{\left(D^{2}+s^{2}\right)^{1 / 2}} d s d \beta \\
& r \cos \left(\left(\beta+\tan ^{-1} \frac{s}{D}-\phi\right)-\frac{D s}{\sqrt{D^{2}+s^{2}}}\right)=r \cos (\beta-\phi) \frac{D}{\sqrt{D^{2}+s^{2}}}-(D+r \sin (\beta-\phi)) \frac{s}{\sqrt{D^{2}+s^{2}}}
\end{aligned}
$$

- $R_{b}(s)$ is a fan projection and
 $f(r, \phi)$ can be written as:

$$
f(r, \phi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-s_{m}}^{s_{m}} R_{\beta}(s) h\left[\left(s^{\prime}-s\right) \frac{U D}{\sqrt{D^{2}+s^{2}}}\right] \cdot \frac{D^{3}}{\left(D^{2}+s^{2}\right)^{3 / 2}} d s d \beta
$$

$r \cos \left(\left(\beta+\tan ^{-1} \frac{s}{D}-\phi\right)-\frac{D s}{\sqrt{D^{2}+s^{2}}}\right)=r \cos (\beta-\phi) \frac{D}{\sqrt{D^{2}+s^{2}}}-(D+r \sin (\beta-\phi)) \frac{s}{\sqrt{D^{2}+s^{2}}}$

- The function $h\left[\left(s^{\prime}-s\right) \frac{U D}{\sqrt{D^{2}+s^{2}}}\right]$ will be then expressed in terms of $h(t)$. Note that $h(t)$ is the inverse Fourier transform of $|w|$ in the frequency domain:

$$
\begin{gathered}
h(t)=\int_{-\infty}^{\infty}|w| e^{j 2 \pi w t} d w \longrightarrow h\left[\left(s^{\prime}-s\right) \frac{U D}{\sqrt{D^{2}+s^{2}}}\right]=\int_{-\infty}^{\infty}|w| e^{j 2 \pi w\left(s^{\prime}-s\right)\left(U D / \sqrt{D^{2}+s^{2}}\right.} d w \\
w^{\prime}=w \frac{U D}{\sqrt{D^{2}+s^{2}}}
\end{gathered}
$$

- Weighted filtered backprojection algorithm can be written as:

$$
f(r, \phi)=\int_{0}^{2 \pi} \frac{1}{U^{2}} \int_{-s_{m}}^{s_{m}} R_{\beta}(s) g\left(s^{\prime}-s\right) \frac{D}{\sqrt{D^{2}+s^{2}}} d s d \beta
$$

- where

$$
g(s)=\frac{1}{2} h(s)
$$

- The image reconstruction is done using the following three steps:
- Step 1 Each projection $R_{\beta}(s)$ is sampled with sampling interval a. The known data then are $R_{\beta i}$ (na) where n takes integer values. The first step is to generate for each fan projection $R_{\beta i}$ (na) the corresponding $R_{\beta i}^{\prime}(n a)$:

$$
R_{\beta i}^{\prime}(n a)=R_{b i}(n a) \frac{D}{\sqrt{D^{2}+n^{2} a^{2}}}
$$

- Step 2 Discrete convolution using an FFT program is performed. Each modified projection $R_{\beta i}^{\prime}(n \alpha)$ with $g(n \alpha)$ is convolved to generate the corresponding filtered projection:

$$
Q_{\beta i}(n a)=R_{\beta i}(n a) \cdot g(n a)
$$

Response for the discrete impulse $\longrightarrow g(n a)= \begin{cases}\frac{1}{8 a^{2}}, & n=0 \\ 0, & n \text { even } \\ -\frac{1}{2 n^{2} \pi^{2} a^{2}}, & n \text { odd. }\end{cases}$

- Step 3 Weighted backprojection of each filtered projection along the fan is performed:

$$
\left.f(x, y)=\Delta B \sum_{i=1}^{M} \frac{1}{U^{2}\left(x, y, \beta_{i}\right)} Q_{\beta i} s^{\prime}\right)
$$

- Algorithm that rapidly re-sorts the fan beam projection data into equivalent parallel beam projection data
- Relationships between the independent variables of the fan beam projections and parallel projections:

$$
t=D \sin \gamma \quad \text { and } \quad \theta=\beta+\gamma
$$

- $\quad R_{\beta}(\gamma)$ denotes a fan beam projection taken at angle β, and $P_{\theta}(t)$ a parallel projection taken at angle θ. It can be written:

$$
R_{\beta}(\gamma)=P_{\beta+\gamma}(D \sin \gamma)
$$

- $\quad \beta$ and γ are equal to $m \alpha$ and $n \alpha$, for some integer values of the indices m and n. Therefore it can be written:

$$
R_{m \alpha}(n \alpha)=P_{(m+n) \alpha}(D \sin n \alpha)
$$

This expresses the fact that the $n^{\text {th }}$ ray in the $m^{\text {th }}$ radial projection is the $n^{\text {th }}$ ray in the $(m+n)^{\text {th }}$ parallel projection.

Thank you for your attention

$\operatorname{sog}^{\infty} \subset$ ЕITE \subset

